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We report results of a search for particles with anomalously high ionization in events with a
high transverse energy jet and large missing transverse energy in 2.4 fb−1 of integrated luminosity
collected by the D0 experiment at the Fermilab Tevatron pp̄ collider. Production of such particles
(quirks) is expected in scenarios with extra QCD-like SU(N) sectors, and this study is the first
dedicated search for such signatures. We find no evidence of a signal and set a lower mass limit of
107 GeV for the mass of a charged quirk with strong dynamics scale Λ in the range from 10 keV
to 1 MeV.

PACS numbers: 14.80.Ly, 12.60.Jv, 13.85.Rm

One of the possible minimal extensions of the standard
model (SM) is an addition of a new unbroken SU(3) gauge
group [1, 2] with new fermions, Q and Q̄, in the funda-
mental representation. Such a SM extension has two pa-
rameters: the new fermion mass mQ and the strength of
the new SU(3) gauge coupling, infracolor, which can be

∗with visitors from aAugustana College, Sioux Falls, SD, USA,
bThe University of Liverpool, Liverpool, UK, cUniversity of
California Davis, Davis, CA, dSLAC, Menlo Park, CA, USA,
eICREA/IFAE, Barcelona, Spain, f Centro de Investigacion en
Computacion - IPN, Mexico City, Mexico, gECFM, Universidad
Autonoma de Sinaloa, Culiacán, Mexico, and hUniversität Bern,
Bern, Switzerland.

defined through the scale Λ where it becomes strong.

If the new fermions, quirks, carry SM charges, they
could be pair-produced at colliders. The phenomenology
of such models at hadron colliders in the case Λ� mQ '
0.1− 1 TeV has been recently studied in [3], revealing an
array of exotic final states that could have eluded pre-
vious searches for physics beyond the SM. The defining
feature is that breaking of the infracolor string is expo-
nentially suppressed due to the large value of the ratio
mQ/Λ. Unlike the SM quarks that immediately fragment
into jets of hadrons, the quirk-antiquirk pair stays con-
nected by the infracolor string like a rubber band that
can stretch to macroscopic length
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L ' mQ

Λ2
' 1 µm

( mQ

100 GeV

)( Λ
100 keV

)−2

. (1)

In this Letter, we consider a case where quirks have
electric charge (e), no strong color charge, 10 keV < Λ <
1 MeV, and 60 GeV < mQ < 1 TeV. This results in state
with a decay length of many centimeters and a string size
that is too small to be resolved in a detector, but large
compared to atomic scales, e.g., for mQ = 100 GeV the
corresponding string size is less than 100 µm, which is
comparable to the resolution of the D0 tracking system.
The quirk-antiquirk pair will be reconstructed in the de-
tector as a single highly ionizing track. Since the net
charge of the string is zero, the track will be straight.
Its experimental signature will resemble that of a single
very energetic muon. However, due to low β, the pair
will often reach the muon chamber outside of the muon
trigger time window. If it is produced in association with
a high ET jet from initial state radiation, the event can
be triggered and the track reconstructed. The signature
which we consider is thus a high transverse momentum
track with a large ionization-energy loss rate (dE/dx), a
jet, and missing transverse energy (6ET ) aligned with the
track.

Several collider experiments have searched for highly
ionizing slowly moving particles, and set limits on pair
production of stable sleptons [4], stop quarks [5] and
charginos [6, 7]. Although some of the searches [5, 8]
were used to set an upper limit on the production cross
section for a single, isolated, weakly interacting particle,
the results can not be easily interpreted in the search for
quirks.

The present search is performed on data collected be-
tween 2006 and 2008 with the D0 detector [9] at the Fer-
milab Tevatron pp̄ Collider at

√
s = 1.96 TeV that cor-

respond to 2.4 fb−1 of integrated luminosity. A detailed
description of the D0 detector can be found elsewhere
[9–11]. It comprises a central tracking system in a 2 T
superconducting solenoid, a liquid-argon/uranium sam-
pling calorimeter, and a muon spectrometer. The track-
ing system consists of a silicon microstrip tracker (SMT)
and a central fiber tracker (CFT). The SMT, which ex-
tends from radius of ' 2 cm to ' 10 cm, has a six-barrel
longitudinal structure, each with a set of four layers ar-
ranged axially around the beam and intersected with 16
radial disks. The silicon wafers are 300 µm thick with
strip pitches ' 50 µm and ' 150 µm. In addition to
position, the SMT detector provides a measurement of
ionization energy with a dynamic range up to ' 1.4 MeV
per strip (' 8 times the energy deposited by a minimum
ionizing particle moving perpendicularly to the silicon
wafer). The CFT, extending from a radius of ' 20 cm
to ' 50 cm, has eight thin coaxial barrels, each support-
ing two doublets of overlapping scintillating fibers. The
muon system, extending from radius ' 3 m to ' 6 m,

resides beyond the calorimeter and consists of a layer of
tracking detectors and scintillating trigger counters be-
fore 1.8 T iron toroidal magnets, followed by two similar
layers after the toroids. The tracker readout gate is ca-
pable of detecting slowly moving particles with velocity
β & 0.1 while in the muon system the readout gate is
suitable only for particles with β & 0.3. The D0 de-
tector uses a three-level trigger system to select events
for the offline analysis. The events used in this analysis
were recorded using a jet trigger requiring in addition
a substantial missing transverse energy calculated using
the sum of the jet momenta ( 6HT = |

∑
jets ~pT |). Jets

used in this analysis are reconstructed using the iterative
midpoint cone algorithm [12] with a cone size of 0.5. Jets
must satisfy quality criteria which suppress background
from leptons, photons, and detector noise effects.

A modified [3] MadGraph [13] event generator with
pythia [14] fragmentation and hadronization is used to
simulate signal events, which are further processed with
a geant-based [15] D0 detector simulation and the same
reconstruction as the data. We investigate quirk masses
(mQ) in the range between 60 and 160 GeV and require
that the jet from initial state radiation has a transverse
momentum pT > 65 GeV. In the simulation, quirks are
treated as non-interacting particles and their energy loss
in the SMT is calculated outside of geant. In the sce-
nario considered in this study, the quirk-antiquirk pair
forms a mesoscopic system. They follow a trajectory
which is a classical superposition of the motion of the
center of mass (c.o.m.) of the quirk-antiquirk system and
the motion of the quirk (or the antiquirk) in the c.o.m.
frame. The distribution of the velocities of the quirk-
antiquirk system is very wide and peaks at β ∼ 0.8 (0.2)
for mQ = 60 (160) GeV. In order to estimate the spe-
cific energy loss dE/dx of the quirk-antiquirk pair, we
integrate the energy deposition of each quirk along its
trajectory and normalize the sum of both contributions
by the corresponding displacement of the c.o.m. The
superposition of both particles and such nontrivial kine-
matics result in a large ionization (& 15 MeV/cm) with
a distribution that is substantially wider than that of a
lepton or a hadron. To simulate the effect of detector
resolution and instrumental noise, we smear the calcu-
lated dE/dx with the width of the dE/dx distribution of
muons from the Z boson decays measured in data. We
simulate an effect of lost hits due to saturation that hap-
pens at ∆E = dE/dx·L

cos θ ' 1.4 MeV
cos θ , where L = 300 µm is

the thickness of a silicon wafer and where θ is the polar
angle with respect to the proton beam direction and the
quirk-antiquirk trajectory.

The main SM background to the quirk signal are as-
sociated production of jets with W boson and multi-
jet events. We select candidate events that have ex-
actly one jet with pT > 75 GeV and |η| < 1.6 [16]
and 6ET > 50 GeV. Events with additional jets with
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pT > 25 GeV are rejected to suppress multi-jet back-
ground. We require a track in the fiducial region of the
central tracker with |η| < 1.6 and pT > 40 GeV. The
track should have at least four hits in the SMT and
at least 12 hits in the CFT in order to suppress back-
ground from fake tracks. Multi-jet events are further
rejected by applying the following isolation criteria. The
sum of the pT of all other tracks in a cone of radius
R =

√
(∆φ)2 + (∆η)2 < 0.5 around the candidate track

must be less than 2.5 GeV. A similar isolation condition
is applied for the total transverse energy measured in the
calorimeter cells in a hollow cone of radius 0.1 < R < 0.4
around the candidate track; this energy must be less than
2.5 GeV. We require the track to be back-to-back in the
transverse plane with the jet, |∆φ(trk, jet)| > 2.5.

In order to suppress the W (→ lν)+jet background, we
apply a cut on the azimuthal angle between the track and
the missing transverse momentum, |∆φ (trk, 6ET )| < 0.5.
We determine muon (electron) distributions of dE/dx
from Z → µ+µ−(e+e−) data events. In these events
we require at least one of the leptons to have an associ-
ated track that passes all signal selection criteria and an
invariant mass of the two leptons consistent with the Z
boson mass peak. The normalized distributions of dE/dx
along such tracks are shown in Fig. 1.

The background events where a candidate track is pro-
duced by a charged hadron come from multi-jet events
with incorrectly reconstructed 6ET . We construct the
dE/dx distribution for these events from tracks found
inside a jet (R < 0.5) with pT > 40 GeV and |η| < 1.6.
The track is required to pass the signal selection, includ-
ing the track isolation requirement, and to originate from
the same vertex as the jet (|zjet − ztrk| < 1 cm [16]).

Another potential background comes from fake tracks
reconstructed from hit patterns due to combinatoric am-
biguities. To determine the shape of the dE/dx distri-
bution, we use the same event selection criteria as those
used for hadrons, except the requirement of zero CFT
hits to suppress contribution from real charged particles
(see Fig. 1). The shape of the dE/dx distribution for
the fake tracks is significantly different from that for lep-
tons and hadrons since crossing angles for such tracks are
mismeasured and thus the thickness per layer crossed is
incorrectly estimated.

Fig. 2 shows the comparison between the data and
the average of only the lepton and hadron backgrounds
(without fake tracks), normalized to the region dE/dx <
13 MeV/cm, and the predicted quirk signal for two mass
values. We observe no excess of highly ionizing tracks
above the expected SM contribution and set limits on
the quirk production cross-section.

We optimize the dE/dx cut to achieve the lowest
95% C.L. limit for each quirk mass. The efficiency of the
track quality requirement is obtained from Z → µ+µ−

data events. Systematic uncertaintis on the signal effi-
ciency come from the combination of the uncertainties

in modeling di-quirk dE/dx, trigger turn-on, and track
quality, and is listed in Table I. We take the largest vari-
ation of individual lepton and hadron backgrounds from
their average as a systematic uncertainty on the back-
ground.

We observe an excess of data at low dE/dx with re-
spect to the lepton and hadron-only background (see
Fig 2). A fit of the data to a sum of fake track and
SM background improves the agreement at low dE/dx.
However, in the absence of signal we disregard the po-
tential contribution from fake tracks to the events being
considered as quirk candidates.

We perform a counting experiment in the region where
dE/dx is larger than a mQ dependent threshold, given in
Table I, and set an upper limit on the quirk production
cross section at the 95% C.L. Limits are calculated using
the modified frequentist approach [17] and are consistent
with expectation (Fig. 3 and Table I).

To summarize, we have performed a search for single
highly ionizing tracks in events with an energetic jet and
large missing transverse energy. This is the first study
of this final state and the first search for quirk-antiquirk
production. We find no excess of the searched highly
ionizing tracks and exclude charged quirks of mass up to
107 GeV at the 95% C.L.

We thank the staffs at Fermilab and collaborating
institutions, and acknowledge support from the DOE
and NSF (USA); CEA and CNRS/IN2P3 (France);
FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ,
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dia); Colciencias (Colombia); CONACyT (Mexico); KRF
and KOSEF (Korea); CONICET and UBACyT (Ar-
gentina); FOM (The Netherlands); STFC and the Royal
Society (United Kingdom); MSMT and GACR (Czech

dE/dx (MeV/cm)
0 5 10 15 20 25 30 35 40

1/
N

 d
N

/d
(d

E
/d

x)

-510

-410

-310

-210

-110 -e+e→electrons, Z
-µ+µ→muons, Z

hadrons, multijets
fake tracks

 -1D0, 2.4 fb

FIG. 1: (color online) Distribution of dE/dx for electrons,
muons, hadrons, and tracks made of random hits (fake
tracks). Each distribution is normalized to unity and the
last bin contains overflow events. The shaded area represents
both the statistical and the systematic uncertainties.
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TABLE I: Results for each simulated quirk mass: dE/dx requirement, number of events in data, number of predicted background
events, overall signal efficiency, quirk plus jet production rate, and observed and expected 95% C.L. upper limits on the signal
cross section.

MQ (GeV) dE/dx cut (MeV/cm) Ndata Nbkg ± syst Efficiency±syst (%) σ (fb) Limit obs.(exp.) (fb)
60 19 4 5± 1 11± 2.0 63 22 (25)
80 21 2 1.9± 0.8 9.9± 2.1 29 20 (20)
100 24 0 0.9± 0.4 9.2± 1.9 16 13 (18)
120 24 0 0.9± 0.4 8.4± 1.7 9.3 14 (19)
140 24 0 0.9± 0.4 6.9± 1.4 5.6 18 (25)
160 24 0 0.9± 0.4 5.6± 1.1 3.4 22 (31)
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FIG. 2: (color online) Distribution of dE/dx for candidate
tracks in 4632 data events with overlaid background nor-
malized to the number of events in data with dE/dx < 13
MeV/cm. The shaded area represents the combined back-
ground uncertainty. The quirk signal is shown for two masses,
mQ = 80 (160) GeV, and normalized to the expected number
of events, 13 (0.53). The last bin contains overflow events.
The shaded area represents both the statistical and the sys-
tematic uncertainties.

Quirk Mass (GeV)
60 80 100 120 140 160

+j
et

) 
(f

b
)

Q
(Qσ

1

10

210

310

, MadGraph
theoryσ

Expected Limit

Observed Limit

1 s.d.±Expected 

 -1D0, 2.4 fb

FIG. 3: (color online) Observed and expected 95% C.L. limits
on σ(QQ̄ + jet). The band shows ±1 standard deviation of
the median expected limit.
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